Stellungnahme der Wissenschaft zur europäischen Erdgaspolitik und Erdgaskonferenz in Wien

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail
Lesedauer 5 Minuten.   

Fossiles Erdgas, welches hauptsächlich aus Methan besteht, ist über einen Betrachtungszeitraum von 20 Jahren etwa 85 mal klimaschädlicher als CO2. Die Konzentration von Methan in der Atmosphäre ist in jüngster Vergangenheit so stark angestiegen wie nie zuvor.

Obgleich Erdgas bei der Verbrennung in CO2 (und Wasser) umgewandelt wird, entweichen erhebliche Mengen von Methan bei der Förderung und dem Transport von Erdgas in die Atmosphäre. Das hat verheerende Folgen für das Klima. Diese sogenannten Leakages (Lecks) werden viel zu selten berücksichtigt, wenn es um die Klimabilanz von Erdgas geht. 

Häufig wird Erdgas als Brückentechnologie und als die klimafreundliche Alternative zu Kohle und Öl dargestellt. Berücksichtigt man jedoch die Methan-Verluste und Emissionen beim Transport, so ist Erdgas ähnlich klimaschädlich wie Kohle. Klar ist, dass für die Stabilisierung des Klimas die Emissionen von CO2 auf null gesenkt werden müssen. Damit ist auch klar, dass Erdgas keine Brücke in die Zukunft darstellt, sondern ein Teil der fossilen Vergangenheit und Gegenwart ist, die wir dringend überwinden müssen.

Die Zeit läuft ab. Bereits in wenigen Jahren werden wir so viel Methan, CO2 und andere Treibhausgase in der Atmosphäre haben, dass die Erwärmung 1,5°C übersteigen wird. Jenseits des 1,5°C-Limits ist die Stabilität des Klimas in Gefahr. Mit jedem weiteren zehntel Grad steigt diese Gefahr weiter an. Ein stabiles Klima ist das Fundament unserer Zivilisation. Ein instabiles Klima bringt sie auf vielfache Weise durch Verteilungskämpfe, Flucht und Krieg ins Wanken und irgendwann zum Einsturz. Unser Handeln in den nächsten Jahren entscheidet, wie groß diese Gefahr für unsere Kinder, Enkelkinder und alle weiteren Generationen sein wird.

Derzeit wird in Europa, auch bedingt durch den menschenverachtenden Angriffskrieg Russlands gegen die Ukraine, in übertriebenem Maße in neue Gasinfrastruktur investiert. Ungeachtet der Lehren, die man aus den Ereignissen des letzten Jahres ziehen müsste, propagieren politische und wirtschaftliche Akteure in Europa bis heute das Festhalten und den Ausbau an Infrastruktur für fossiles Erdgas. Diese Politik ist bar jeder wissenschaftlicher Grundlage und Vernunft und kann nur durch blindes Festhalten an alten Ideologien erklärt werden.

Aus wissenschaftlicher Sicht sind die Ängste und Befürchtungen all jener, die diese politischen und wirtschaftlichen Entwicklungen mit Sorge sehen und ihnen aktiv entgegentreten, völlig gerechtfertigt. Der Protest gegen den weiteren Ausbau von Erdgas-Infrastruktur und für einen Ausstieg aus Erdgas sowie allen fossilen Energieträgern auf dem allerschnellsten Weg zeugt von Vernunft, das Festhalten an Kohle, Öl und Gas hingegen zeugt von ideologischer Verblendung. Um diese Verblendung rechtzeitig zu überwinden, sind angesichts der enormen Bedrohungslage und Dringlichkeit sämtliche gewaltfreien Protestformen aus Sicht der unterzeichnenden Wissenschaftler:innen gerechtfertigt.


 Unterzeichner:innen

Koordinationsteam der Scientists for Future Wien 

 Health for Future

  1. Personen
  2. Prof. Dr. Elske Ammenwerth
  3. Univ.-Prof. Dr. Enrico Arrigoni (Technische Universität Graz)
  4. Hon.-Prof. Martin Auer, B.A.
  5. Prof. Dr.phil. Dr.h.c. mult. Bruno Buchberger (Johannes Kepler Universität Linz; RISC; Academy of Europe)
  6. Prof. Dr. Reinhold Christian (geschäftsführender Präsident des Forums Wissenschaft & Umwelt)
  7. Univ.-Prof. Dr. Giuseppe Delmestri (Wirtschaftsuniversität Wien)
  8. Prof. (FH) Dr. Johannes Jäger (Fachhochschule des BFI Wien)
  9. Ao. Univ.-Prof. Dr. Jürgen Kurt Friedel, (Universität für Bodenkultur Wien)
  10. Univ.-Prof. Dr. Barbara Gasteiger Klicpera (Universität Graz)
  11. Univ.-Prof. Dr. Maria-Regina Kecht (Emerita, Rice University, Houston, TX)
  12. Prof.in, Dr. Mag. Sabrina Luimpöck (Fachhochschule Burgenland)
  13. Univ.-Prof. DDr. Michael Getzner (Technische Universität Wien)
  14. Ao Univ.-Prof. Dr. Georg Gratzer (Universität für Bodenkultur Wien – Inst. o. Forest Ecology)
  15. Univ.-Prof.i.R. Dr.techn. Wolfgang Hirschberg (ehem. Technische Universität Graz)
  16. em. Univ.Prof. Dr. Dr.hc Helga Kromp-Kolb (Universität für Bodenkultur Wien)
  17. HS-Prof. Dr. Matthias Kowasch (Pädagogische Hochschule Steiermark)
  18. Univ.-Prof. Axel Maas (Universität Graz)
  19. Univ.-Prof. Dr. René Mayrhofer (Johannes Kepler Universität Linz)
  20. Prof. Dr. Markus Öhler (Universität Wien)
  21. Univ.-Prof. Susanne Pernicka (Johannes Kepler Universität Linz – Inst. f. Soziologie)
  22. Univ.-Prof. Dr. Alfred Posch (Universität Graz)
  23. Univ.-Prof. Volker Quaschning
  24. Ao. Univ.-Prof. Mag. Dr. Klaus Rieser (Universität Graz)
  25. Univ.-Prof. Dr. Michael Rosenberger (Katholische Privatuniversität Linz – Inst. f. Moraltheologie)
  26. Prof. Christa Schleper
  27. Univ.-Prof. Dr. Henning Schluß (Universität Wien – Inst. f. Bildungswissenschaft)
  28. a.o. Univ.-Prof. Dr. Ruth Simsa (Wirtschaftsuniversität Wien)
  29. Prof. Dr. Ulrike Stamm (Pädagogische Hochschule Oberösterreich)
  30. Univ.-Prof. Mag. Dr. Günther Stocker (Universität Wien – Inst. f. Germanistik)
  31. Ao. Univ.-Prof. Dipl.-Ing. Dr. Harald Vacik (Universität für Bodenkultur Wien – Inst. f. Waldbau)
  32. Univ.-Prof. Eva Vetter (Universität Wien)
  33. Hon.-Prof. Dr. Johannes Weber (Universität f. angewandte Kunst Wien)
  34. Univ.-Prof. Dr. Dietmar W. Winkler (Universität Salzburg – Theologische Fakultät)
  35. Ernest Aigner, PhD (Wirtschaftsuniversität Wien)
  36. Dr. Ilse Bartosch (ehem. Universität Wien)
  37. Dr.nat.techn. Benedikt Becsi (Universität für Bodenkultur Wien)
  38. Dr. Bernhard Binder-Hammer (Technische Universität Wien)
  39. Dr. Hubert Bratl
  40. Dr. Lukas Brunner (Universität Wien – Inst. f. Meteorologie und Geophysik)
  41. Mag. Dr. Michael Bürkle
  42. Dr. Renate Christ (IPCC Secretariat retired)
  43. Dr. Rachel Dale (Universität f. Weiterbildung Krems)
  44. Assoc. Prof. Dr. Ika Darnhofer PhD (Universität für Bodenkultur Wien – Inst. f. Agrar- und Forstökonomie)
  45. Dr. Monika Dörfler (NUHAG)
  46. Univ.-Prof. Dr. Stefan Dullinger (Universität Wien)
  47. Assoc. Prof. Dr. Kirsten v. Elverfeldt (Alpen-Adria-Universität Klagenfurt)
  48. Assoc.-Prof. Dr. Franz Essl (Universität für Bodenkultur Wien – Dep. f. Botanik und Biodiversitätsforschung)
  49. Assoc. Prof. MMag. Dr. Harald A. Friedl (Fachhochschule JOANNEUM – Inst. f. Gesundheit und Tourismus Management)
  50. Dr. Florian Freistetter (Science Buster)
  51. Ass. Prof. Mag. Dr. Herbert Formayer (Universität für Bodenkultur Wien – Inst. f. Meteorologie und Klimatologie)
  52. Dr. Stefan Forstner (Bundesforschungszentrum für Wald, Wien)
  53. Dr. Patrick Forstner (Medizinische Universität Graz)
  54. Dr.in Friederike Frieß (Universität für Bodenkultur Wien)
  55. Dr.in Manuela Gamsjäger (Pädagogische Hochschule Oberösterreich)
  56. Mag. Dr. Helmut Franz Geroldinger (MAS)
  57. Assoc. Prof. DI. Dr. Günter Getzinger (Technische Universität Graz)
  58. Mag. Dr. Marion Greilinger
  59. DI. Dr. Franz Greimel (IHG, Universität für Bodenkultur)
  60. Assoc. Prof. Dr. Gregor Gorkiewicz (Medizinische Universität Graz)
  61. Dr. Gregor Hagedorn (Mitbegründer S4F, Akad. Dir. am Museum für Naturkunde Berlin)
  62. Dr. Thomas Griffiths (Universität Wien – Dep. f. Lithosphärenforschung)
  63. Ass. Prof. MMag. Ulrike Haele (Ak. d. Bildenden Künste Wien, NDU St. Pölten)
  64. Dr. Stefan Hagel (ÖAI / ÖAW)
  65. Assist.-Prof. Dr. Daniel Hausknost (Wirtschaftsuniversität Wien)
  66. Mag. Dr. Friedrich Hinterberger (Universität für Angewandte Kunst)
  67. Dr. Sara Hintze (Universität für Bodenkultur Wien)
  68. Dr. Stefan Hörtenhuber (Universität für Bodenkultur – Dep. f. Nachhaltige Agrarsystem)
  69. Dr. Silvia Hüttner
  70. Dr. Daniel Huppmann (IIASA)
  71. Dr. Klaus Jäger
  72. Dr. Andrea Jany (Universität Graz)
  73. Assoc. Prof. Dr. Christina Kaiser (Universität Wien)
  74. Univ.-Doz. Dr. Dietmar Kanatschnig
  75. Melina Kerou, PhD (Senior Scientist, University of Vienna)
  76. DI Dr. Lukas Daniel Klausner (Fachhochschule St. Pölten – Inst. f. IT-Sicherheitsforschung, Cent. f. A.I.)
  77. Prof. Dr. Margarete Lazar 
  78. MMag. Dr. Verena Liszt-Rohlf (Fachhochschule Burgenland GmbH)
  79. Dr. Mag. MM. Margarete Maurer (S4F, Präsidentin d. Vereins interdisziplinäre Forsch. und Praxis)
  80. Assoc. Univ.-Prof. Dr. Uwe Monkowius (Johannes Kepler Universität Linz)
  81. DI. Dr. Michael Mühlberger
  82. Dr. Heinz Nabielek (Forschungszentrum Jülich, retired)
  83. DI. Dr. Georg Neugebauer (Universität für Bodenkultur Wien)
  84. Dr. Christian Nosko (KPH Wien/Krems)
  85. Mag. Dr. Ines Omann (ÖFSE Wien)
  86. Priv. Doz. DDr. Isabella Pali (Veterinärmedizinische Universität; Medizinische Universität Wien)
  87. Ass. Prof. Beatrix Pfanzagl (Medizinische Universität Wien)
  88. Dr. Barbara Plank (Universität für Bodenkultur Wien)
  89. Dr. Christian Peer (Technische Universität Wien)
  90. Dr. Jagoda Pokryszka (Medizinische Universität Wien)
  91. Dr. Edith Roxanne Powell (LSE)
  92. Dr. Thomas Quinton
  93. Dr. Nicoulas Roux (Universität für Bodenkultur Wien)
  94. Dr. Gertraud Malsiner-Walli (Wirtschaftsuniversität Wien – Inst. f. Statistik und Mathematik)
  95. Priv. Doz. Dr. Martin Rubey (Technische Universität Wien – Inst. f. diskrete Mathematik und Geometrie)
  96. Dr. Helmut Sattmann (Naturhistorisches Museum)
  97. Dr. Patrick Scherhaufer (Universität für Bodenkultur Wien)
  98. Dr. Hannes Schmidt (Universität Wien)
  99. Assoc. Prof. DI. Dr. Josef Schneider (Technische Universität Graz)
  100. Dr. Matthias Schwarz M.Sc. M.Sc.
  101. DI. Dr. Sigrid Schwarz (Vizepräsidentin der Österreichischen Bodenkundlichen Gesellschaft,  Univ. Lekt.)
  102. Dr. René Sedmik (Technische Universität Wien)
  103. Dr. Barbara Smetschka (Universität für Bodenkultur Wien)
  104. Dr. Ena Smidt (Universität für Bodenkultur Wien)
  105. Maximilian Sohmen, PhD (Medizinische Universität Innsbruck – Inst. o. Biomedical Physics)
  106. Dr. Johannes Söllner
  107. Assoc. Prof. Dr. Reinhard Steurer (Universität für Bodenkultur Wien)
  108. Dr. Leonore Theuer (Juristin)
  109. Dr.med.vet. Maria Sophia Unterköfler (Veterinärmedizinische Universität Wien)
  110. Doz. Dr. Tilman Voss (Scientists for Future – Fachgruppe Politik und Recht)
  111. Dr. Johannes Waldmüller (ZSI Wien)
  112. Dr. Anja Westram
  113. Dr. Dominik Wiedenhofer (Universität für Bodenkultur Wien)
  114. DI. Dr. David Wöss (Universität für Bodenkultur Wien)
  115. Mag. Heidemarie Amon (AECC-Biologie)
  116. Franz Aschauer, M.Sc
  117. DI Stefan Auer (Universität für Bodenkultur Wien) 
  118. Pamela Baur, M.Sc. (Universität Wien)
  119. Mag. Dieter Bergmayr (KPH Wien/Krems)
  120. Fabian Dremel, M.Sc.
  121. Christof Falkenberg, M.Sc. (Universität für Bodenkultur Wien)
  122. Gwen Göltl, M.A. (Universität Wien – Institut für Soziologie)
  123. Mag. Peter Gringinger (CEnvP, RPGeo)
  124. DI Martin Hasenhündl, B.Sc. (Technische Universität, Institut für Wasserbau und Ingenieurhydrologie)
  125. DI. Bernhard Heilmann (AIT)
  126. Jennifer Hennenfeind, M.Sc.
  127. DI. Ines Hinterleitner
  128. Mag. Hans Holzinger
  129. Julian Hörndl, M.Sc. (Universität Salzburg – Fachb. Chemie und Physik der Materialien)
  130. DI. Christina Hummel (Universität für Bodenkultur Wien)
  131. Lisa Kaufmann, Mag.a  (Universität für Bodenkultur Wien – Institut für Soziale Ökologie)
  132. Dipl. Geoökol. Steffen Kittlaus (Technische Universität – Inst. f. Wassergüte und Ressourcenmanagement)
  133. Julia Knogler, M.A. (Universität für Bodenkultur Wien – Zentrum für globalen Wandel und Nachhaltigkeit)
  134. Dipl.Ing. Bernhard Koch(Universität für Bodenkultur Wien)
  135. Jana Katharina Köhler, M.Sc B.Sc, (Universität Wien)Mag.a (FH) 
  136. Andrea Kropik, MSc (Fachhochschule Campus Wien)
  137. DI. Barbara Laa (Technische Universität Wien)
  138. Hans-Peter Manser MA, (MDW, Universität für Musik und darstellende Kunst Wien)
  139. DI. Alfred Mar (Universität für Bodenkultur Wien)
  140. Mag. Mirijam MockMaximilian Muhr, M.Sc. (Universität für Bodenkultur Wien)
  141. Mag. Elisabeth Mühlbacher
  142. Max Nutz M.Sc.
  143. Markus Palzer-Khomenko, M.Sc.
  144. Katharina Perny, M.Sc. (Universität für Bodenkultur Wien – Inst. f. Meteorologie und Klimatologie) 
  145. Martin Pühringer, M.Sc. (NLW, Universität Salzburg)
  146. Mag. Ines Clarissa Schuster
  147. DI Arthur Schwesig
  148. Mag. Bernhard Spuller
  149. Eva Straus, M.Sc.
  150. Ivo Sabor, M.Sc. (Fachhochschule JOANNEUM – Inst. f. Energie-, Verkehrs- und Umweltmanagement)
  151. Florian Weidinger, M.Sc. (Universität für Bodenkultur Wien)
  152. Roman Bisko, B.Sc.
  153. Maria Mayrhans, B.Sc.
  154. Jana Plöchl, B.Sc.
  155. Thomas Wurz, B.A.
  156. Anika Bausch, B.Sc. M.A.

Titelbild: Gerd Altmann auf Pixabay



FacebooktwitterrssyoutubeinstagramFacebooktwitterrssyoutubeinstagram

100% Renewables

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail
Lesedauer 4 Minuten.   

von Marco Sulzgruber

Kommen wir nur mit Energie aus erneuerbaren Quellen aus?

Um die globale Erwärmung einzuschränken wird es notwendig sein, die Energiegewinnung aus fossilen Brennstoffen drastisch zu reduzieren oder ganz zu beenden. Aber kann der globale Energiebedarf überhaupt nur mit erneuerbaren Quellen gedeckt werden? Um diese Frage zu beantworten, muss man sich zuerst die Frage stellen, wie viel Energie die Menschheit eigentlich braucht und in Zukunft brauchen wird. Dazu gibt es unterschiedliche Modelle und Szenarien, in manchen bleibt der Energiebedarf in etwa gleich, in manchen wird er ansteigen und in anderen sinken. Laut einer Prognose von Statista wird bis 2050 global jährlich fast anderthalbmal so viel Energie verbraucht werden, wie noch 2020.

„Die Forschung meines Teams folgt dem Prinzip eines stetigen Anstiegs der Energiedienstleistungen“ gibt auch Christian Breyer Scientists4Future gegenüber Auskunft. Der Professor für Solarwirtschaft an der finnischen LUT Universität ist einer der Autor:innen eines kürzlich erschienenen Papers[1], das die bisherige Forschung über Energiesysteme zusammenfasst, die zu 100% aus erneuerbarer Energie bestehen. Die zentrale These: Bis 2050 wäre es durchaus möglich, den globalen Energiebedarf kostengünstig mit erneuerbaren Quellen zu decken. Wichtige Elemente dabei sind neben der Gewinnung von nutzbarer Energie auch die Fähigkeit, sie zu speichern und die Art und Weise, wie sie verbraucht wird. Professor Breyer geht etwa von einer verstärkten Elektrifizierung aus: „teilweise reduziert das den finalen Energiebedarf (man denke an Fahrzeuge mit Elektrobatterien gegen Verbrennungsfahrzeuge) und es reduziert auch massiv den Bedarf an primärer Energie, durch das Auslaufenlassen von ineffizienten Verbrennungsprozessen“. Auch beim Heizen und Kühlen wären moderne Wärmepumpen effizienter, als heute übliche Prozesse und diese gesteigerte Effizienz sei wichtig, denn dass ein Großteil der Menschen ihren Lebenswandel ändern und zum Beispiel weniger oft ins Flugzeug steigen wird, glaubt Breyer nicht.

Die Energiequellen der Zukunft: Wind, Sonne & Wasser

Bei der Energiegewinnung selbst werden laut Paper vorwiegend Photovoltaik und Windräder zum Einsatz kommen. Auf regionaler oder nationaler Ebene soll aber auch Wasserkraft eine Rolle spielen. Bereits jetzt gewinnen einige (vor allem kleinere) Länder wie Albanien, Costa Rica, Norwegen oder Island ihren Strom fast ausschließlich aus Wasserkraftwerken. Die Länder Paraguay und Bhutan produzieren sogar so viel Strom aus Wasserkraft, dass ein großer Teil davon exportiert werden kann. In einigen größeren Ländern fußt außerdem regional fast die gesamte Stromerzeugung auf Wasserkraft, etwa auf Tasmanien, in Teilen des amerikanischen Bundesstaates Washington und in mehreren Provinzen Kanadas. Wieder andere Länder, etwa Äthiopien und die Demokratische Republik Kongo haben zwar Wasserkraftwerke, die einen Großteil des verfügbaren Stroms produzieren, allerdings hat hier bei weitem nicht die gesamte Bevölkerung Zugang zu Stromverbrauch. Dies könnte sich in Zukunft noch verschärfen, denn der Klimawandel stellt für diese Art von Energiegewinnung ein Problem dar.

„Trockenperioden sind eine große Herausforderung für Länder, die auf Wasserkraft setzen, gar keine Zweifel“ so Breyer. Allerdings: „In unseren Studien haben wir bemerkt, dass die Kombination mit solarer PV und Windkraft eine große Hilfe sind, das Risiko auszubalancieren. Vielleicht wird in solchen Ländern eine strategische Reserve für Dürre-Jahre gebraucht“. Auch andere Probleme mit Wasserkraft werden im Paper beschrieben, denn durch den Bau von Staudämmen müssen teilweise indigene Bevölkerungsgruppen umgesiedelt werden. Überhaupt sind Stauseen ein großer Eingriff in die Natur und können eine große Belastung für die Biodiversität sein (Hinweis: Scientists4Future veranstaltete zum Thema Naturschutz/Landschaftsschutz vs. Klimaschutz am 29.09.2022 einen Talk for Future, der bald auch hier nachgesehen werden kann). Aus diesem Grund hat sich Professor Breyer etwa gegen den Bau der Grand-Inga-Dämme in der Demokratischen Republik Kongo ausgesprochen, die eine Gefährdung für hunderte endemische Spezies bedeuten würde.

Auch Bioenergie aus Energiepflanzen oder Biokraftstoffen erteilt Breyer eine Absage. Diese stünden „in einem massiven Konflikt mit Biodiversität und Nahrungssicherheit“ und hätten eine extrem niedrige Energieeffizienz. In seinen Modellen verwendet Breyer nur Bioenergie aus Abfällen und Nebenprodukten, weist aber darauf hin, dass andere Wissenschaftler hier unterschiedliche Ansätze verwenden würden.

Verfügbarkeit und Effizienz der Energiegewinnung sind heutzutage keine Argumente mehr gegen erneuerbare Energien

Neben potentiellen Schäden an der Biodiversität werden auch andere Kritikpunkte an der Idee, Energie nur aus erneuerbaren Quellen zu gewinnen, in dem neuen Paper diskutiert. Kein unlösbares Problem ist laut den Autor:innen beispielsweise die von Kritiker:innen oft angeführte Tatsache, dass Solar- und Windkraftwerke nicht durchgehend ihre Höchstleistungen liefern können. Hier gäbe es nämlich eine Reihe von Maßnahmen, die zur Stabilisierung der Energieverfügbarkeit beitragen können. Ein Beispiel ist die Erzeugung von Wasserstoff zu Zeiten, wo mehr Strom erzeugt wird, als verbraucht werden kann. Dieser Wasserstoff kann dann wieder in Energie umgewandelt werden, wenn der Stromverbrauch die -erzeugung übersteigt. Auch die Kritiken, dass Strom aus Photovoltaik und Wasserkraft zu teuer, oder der energetische Return on Investment zu gering wäre, sind laut den Autor:innen veraltet und würden durch neue Technologien immer mehr an Bedeutung verlieren.

Die größten Problempunkte: Rohstoffgewinnung und -Entsorgung

Gewichtiger sei die Frage nach der Rohstoffgewinnung für den Bau von Anlagen. Doch auch hier könnte durch neue Strategien und Technologien Abhilfe geschafft werden. Ein Beispiel ist Lithium, das etwa in Batterien verwendet wird. Hier wird ein mögliches Recyclingsystem für Lithium angeführt, außerdem wäre es möglich, dass die Kosten für die Extraktion von Lithium aus Meerwasser in Zukunft deutlich sinken werden, oder dass der Bedarf sinkt, weil etwa Batterien, die stattdessen auf Natrium-Ionen basieren, praktikabler werden. Auch andere Materialien, wie Kobalt, Silber oder Magnete aus Neodym und Dysprosium, die beim Bau von Windturbinen und Elektrofahrzeugen verwendet werden, könnten bei Knappheit durch leichter verfügbare Ressourcen ersetzt werden.

Ein zusätzliches Problem ist die Entsorgung von Bauteilen, da diese oft giftige Schwermetalle enthalten. Dies verstärkt sich dadurch, dass etwa Photovoltaikanlagen oft schon vorzeitig entsorgt werden, weil neue Generationen der Anlagen mit besserer Leistung auf den Markt kommen. Auch bei der Erzeugung von Solarpanelen ist die Belastung durch toxische Komponenten ein Problem. Hier muss auch der Aspekt der sozialen Gerechtigkeit genannt werden, denn während vor allem wohlhabende Bevölkerungsschichten die Möglichkeit haben, auf eigenen Dächern Photovoltaikanlagen zu installieren und so vom erzeugten Strom zu profitieren, trifft die gesundheitliche Belastung vor allem die Arbeiter:innen, die an der Herstellung, Installation und später der Entsorgung der Anlagen beteiligt sind.

Dennoch: Erneuerbare Energien sind insgesamt deutlich weniger schädlich als fossile Brennstoffe

Allen Kritikpunkten kann laut Breyer und seinen Koautor:innen jedenfalls eines entgegengestellt werden: „Erneuerbare Energie ist immer noch in fast jeder Hinsicht weniger schädlich, als fossile Brennstoffe“ und während Probleme bei Letzteren möglicherweise inhärent und unlösbar sind, könnten sie bei erneuerbarer Energie verhindert, oder zumindest minimiert werden. Dass beispielsweise Ressourcen auf der Welt ungleich verteilt sind, trifft etwa auch auf Erdöl-Vorkommen zu und auch hier sind Länder mit besonders hohen Fördermengen nicht immer Musterschüler, wenn es um soziale Gerechtigkeit oder Einhalten der Menschenrechte geht. Und während einige seltene Elemente sich grundsätzlich aus alten Solarpanelen oder Batterien zurückgewinnen lassen, ist das bei fossilen Brennstoffen, wenn sie einmal verbrannt sind, nicht mehr möglich.


[1] Breyer, Christian et al (2022).: On the History and Future of 100% Renewable Energy Systems Research- In: IEEE Access 10. Online: https://ieeexplore.ieee.org/document/9837910



FacebooktwitterrssyoutubeinstagramFacebooktwitterrssyoutubeinstagram

„Cool“ and the City

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail
Lesedauer 5 Minuten.   

von Ines Clarissa Schuster

Aufgrund des Klimawandels werden die Temperaturen in vielen Gebieten der Welt ansteigen. Die Wissenschaft erwartet, dass vor allem die Städte Mitteleuropas von immer härteren und länger andauernden Hitzewellen gebeutelt werden.1 

Auswirkungen der Hitze auf den Menschen

In der Podcastfolge Alpenglühen vom 17. Juli 20222 erläutert Dr. Heinz Fuchsig im Gespräch mit Sofia Palzer Khomenko welche Auswirkungen die Hitze medizinisch auf den menschlichen Organismus hat: „Der Mensch fühlt sich nur in einem sehr engen Temperaturbereich wohl. Beim Fernsehen zu Hause, wenn es 21° hat – ziehen wir uns einen Pullover über. Bei 26° fühlen wir uns in der Badehose am wohlsten und bei 35° sind wir gezwungen uns regelmäßig im kalten Wasser abzukühlen. Niemand fühlt sich bei 35° noch wohl.“

Bei großer Hitze muss ein großer Teil der maximalen Herzleistung, welche überhaupt erbracht werden kann, für die Kühlung der Haut reserviert bleiben. In warmen Nächten, wenn es in unseren Wohnungen über 25°C warm ist, muss das menschliche Herz um 2/3 mehr arbeiten, um die Haut zu durchbluten. Diese mehr-Anstrengung des Herzens während der ganzen Nacht führt dazu, dass der Mensch nicht ausgeschlafen und nicht ausgeruht ist. Studien zeigen ab 25°C nimmt die körperliche Leistungsfähigkeit ab. Unfälle nehmen ab 27°C deutlich zu. Ab 29°C nimmt die geistige Leistungsfähigkeit ab.3, 4

Klimaanlagen leiten den eigenen thermischen Abfall in die Umgebung

Wenn die Außentemperaturen steigen, und selbst die Nacht keine erholsame Temperaturabsenkung bringen, steigt die individuelle Lust, sich eine Klimaanlage zu kaufen. Immer mehr Familien mit Kleinkindern oder Pensionisten können die Hitzewellen nicht ertragen. Die Industrie lockt mit Werbung für die günstige Lösung „Klimaanlage“. Sie wirkt unkompliziert und rasch umsetzbar. Ist dies aber wirklich eine gute Idee?

Dr. Fuchsig: „Die Leute in Hong Kong haben eine Lärmtoleranz, die um 20 dB höher ist als die der Österreicher. Die Ursache für diese enorm hohe Toleranz liegt daran, dass sobald dort Fenster geöffnet werden, sind 150 laufende Klimaanlagen in der direkten Umgebung zu hören.  Dementsprechend sind Menschen in Hong Kong einen Dauerschallpegel gewohnt, der weit über dem unsrigen liegt.“ Man kann sich vielleicht vorstellen, wie das klingt, wenn man direkt am Wiener Gürtel wohnt.

Klimaanlagen sind laut – wenn die Nachbarn eine haben, ist man beinahe gezwungen selbst eine zu besorgen, weil man die Fenster nicht mehr öffnen kann, ohne von dem Lärm belästigt zu werden. Außerdem führen Klimaanlagen dazu, dass die Durchschnittstemperaturen der Stadt noch weiter ansteigen.

Dr. Fuchsig: „Im Mittelalter haben wir aufgehört unseren Kot und Abfälle auf die Straße zu werfen. Damit haben wir uns viele Krankheiten und Pandemien gespart. Jetzt müssen wir aufhören unsere Abgase und unsere thermischen Abfälle auf die Straße zu kippen.“

Technologien zur Kühlung

°CELSIUS traf sich mit Stefan Lendl, einem Experten von Wien Energie, der sich mit Technologien beschäftigt, um nachhaltig sowie sozial Wohnraum zu temperieren. Er ist auch aktiver Young Energy Professional. „Wir suchen nach Wegen, um die Abwärme aus den Wohnungen entweder direkt zu nutzen — zum Beispiel Warmwasser zu generieren – oder zu Speichern – zum Beispiel im Boden, Grundwasser oder als Fernwärme zu nutzen.“

°CELSIUS: Welche Möglichkeiten zur Kühlung gibt es?

Stefan Lendl: „Am einfachsten ist es, während Zeiträumen, in denen es draußen kühler ist als drinnen, die Fenster zu öffnen. Solange es aber draußen wärmer ist als drinnen, muss man sich Alternativen überlegen.“

Die gängigsten Varianten sind Split-Klimaanlagen und „Fancoils“ oder „Umluftkühlgeräte“. Diese sind in vielen Büros im Einsatz und bestehen aus 2 wesentlichen Komponenten: 

  • einem Innengerät mit Ventilator. Der saugt die warme Luft an und leitet sie dann über einen Wärmetauscher. Dieser wird von einer kalten Flüssigkeit durchflossen und kühlt so die Luft ab. Die Flüssigkeit wird über Rohrleitungen weitertransportziert zu
  • einem Außengerät, wie z.B einer Wärmepumpe, welche die Flüssigkeit weiter erwärmt und durch einen weiteren Wärmetauscher leitet, der über einen Ventilator mit Außenluft gekühlt wird.

Kleine Außengeräte (z.B. für private Anwendungen) sieht man gelegentlich in der Größe eines Reisekoffers an Hausfassaden oder Dächern. Bei größeren Anlagen (z.B. für einen Supermarkt) ist von außen oft nur ein Luftwärmetauscher zu sehen, der beispielsweise aussieht, wie ein großer Tisch und sich auf dem Dach befindet. (Auf Google-Maps kann man mit der Satelliten Ansicht einfach abschätzen, wie viele solche Wärmetauscher bereits in der eigenen Stadt vorhanden sind.) 

Die großen Nachteile dieser Klimaanlagen sind:

  • Die Wärme wird aus dem Gebäude hinaus transportiert und an die Umgebung abgegeben. 
  • Die Rückkühler am Dach brauchen viel Platz, welcher besser genutzt werden könnte: PV-Anlagen, Gründach, etc.
  • Die Rückkühler sind sehr laut und belästigen die Bewohner sowie die Nachbarn.

Nachhaltige Kühlungsmöglichkeiten

Eine andere Möglichkeit, als nur die Luft der Innenräume zu kühlen, ist, die Gebäudemasse zu nutzen und bestehende Flächenheizsysteme mit kühlem Wasser zu durchfluten. Zum Beispiel kann die bestehende Fußbodenheizung im Sommer mit kühlem Wasser durchflutet werden. Dies bringt den Vorteil von wenig zusätzlichem Installationsaufwand – es gibt nur ein Heiz/Kühl-System. Die Ängste, die kalte Luft würde sich dann nur am Boden sammeln, bestätigten sich in vielen praktischen Projekten nicht. Die Bewohner der mittels Fußbodenheizung temperierten Wohnungen sind großteils sehr zufrieden und glücklich über die Möglichkeit. Man kann auch eigene Kühldecken einziehen. Neueste Studien zeigen, dass auch die Heizung über die Decke kaum Nachteile bringt. Eine weitere Möglichkeit ist, die Heiz-/Kühlleitungen in den Betonkern (also in die Wände) zu legen. 

Die große Masse der Gebäudehülle ist sehr träge. Durch Flächenheiz-/Kühlsysteme kann man die Temperaturen nur sehr langsam beeinflussen. Dafür wirkt das Gebäude auch als Speicher. Die Ergebnisse dieser Wohnraumtemperierung darf der Nutzer nicht verwechseln mit bekannten Klimaanlagen – da kann ein Nutzer nur enttäuscht werden. Die Temperierung funktioniert viel langsamer und weit nicht so stark. Innenräume können um 2-5°C gekühlt werden, je nach Orientierung, Nutzung, Außenbeschattungs-Möglichkeiten, etc.

Die großen Vorteile sind:

  1. In Flächenkühlsystemen hat das kühlende Wasser ein höheres Temperaturniveau (ca. 20°) als es für Fancoils (6°) notwendig ist. Dadurch ist ein viel geringerer Stromeinsatz notwendig und die Wärmepumpe arbeitet in einem effektiveren Bereich.
  2. Der geringe Stromeinsatz führt zu einem doppelten nutzen – Kühlung & Wärme. Anstatt dass die Umgebung noch weiter aufgeheizt wird, kann die Wärme genutzt werden.
  3. Durch die effektive und doppelte Nutzung der Wärmepumpen wird um 30% weniger CO2 emittiert als in herkömmlichen Klimaanlagen.5

Besonders nachhaltig wird diese Temperierung, wenn man die Abwärme nicht nur im selben Gebäude, sondern in einem größeren Gebiet oder Quartier verteilen kann. Dies kann durch ein Nahwärmenetz oder die Fernwärme erfolgen.

Diese Technologien sind im Einfamilienwohnbau bereits lange bekannt und gang und gäbe. Wien Energie arbeitet nun daran, diese Konzepte auch gebietsübergreifend im mehrgeschoßigen Wohnbau anzuwenden. So werden sie vom Luxus-Produkt zu sozial verträglichem Standard-Komfort.

Aktuelle Beispielprojekte

Stefan Lendl erzählt, dass die Nachfrage nach nachhaltiger Wohnraumtemperierung stetig steigt. Aktuell umgesetzte Projekte sind zum Beispiel:

  • Kirschblütenpark/Arakawastraße, im 22. Bezirk. Wien Energie erarbeitet gemeinsam mit dem innovativen Bauträger AURIS Immo Solution ein Energiekonzept zum Wärmen und Kühlen. Hier wird die Abwärme direkt ins Fernwärmenetz eingespeist.6
  • Käthe-Dorsch-Gasse, im 14. Bezirk. Hier errichtet Wien Energie zusammen mit ARWAG ein Erdsondenfeld, welches im Sommer über die Abwärme der Fußboden-Temperierung regeneriert wird. Im Winter wird die Erdwärme zum Heizen genutzt.
  • Grasbergergasse: Die Abwärme aus der Temperierung wird einerseits für die Warmwasserbereitung genutzt. Die überschüssige Abwärme wird an die Umgebung mittels Luftwärmetauscher abgegeben.

Welche Normen und Gesetze sind notwendig, um den stetigen Ausbau von klassischen Klimaanlagen zu stoppen?

Herkömmliche Klimaanlagen bedeuten den Tod jedes öffentlichen Lebens in der Großstadt. Sie führen zu einer weiteren Erwärmung der Umgebung, Verursachen einen großen Lärmpegel und CO2 Emissionen.

°CELSIUS: „Eine Möglichkeit wäre; eine Gebühr auf thermische Emissionen zu erheben. So wie niemand auf die Idee käme seinen Haushaltsmüll einfach auf die Straße zu kippen – sollte es ähnlich undenkbar sein, seinen thermischen Abfall auf die Straße zu kippen.“

Titelbild: von Gerd Altmann auf Pixabay


1https://wua-wien.at/klimaschutz-klimawandelanpassung-und-resilienz/klimawandel

2https://alpengluehen.scientists4future.org/ 

3https://www.salzburg24.at/news/oesterreich/hitze-laesst-unfall-haeufigkeit-deutlich-steigen-123393727

4https://www.statistik.at/fileadmin/announcement/2022/06/20220627UnfaelleHitzetage.pdf

5https://www.ots.at/presseaussendung/OTS_20200712_OTS0008/cool-von-kopf-bis-fuss

6https://presse.alpha-z.at/news-immo-solutions-und-zima-wien-feiern-bauteil-fertigstellung-am-kirschbluetenpark?id=137314&menueid=19548&l=deutsch&tab=1



FacebooktwitterrssyoutubeinstagramFacebooktwitterrssyoutubeinstagram

Kraftwerk Kaunertal: Energiewende muss naturverträglich sein

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail
Lesedauer 2 Minuten.   

Österreichischer Biodiversitätsrat (ÖBDR) verlangt Rücksicht auf Artenschutz bei Energiewende

Wien (OTS) – Österreich hat sich das Ziel gesetzt, bis 2030 den Strombedarf nur noch aus erneuerbaren Energiequellen zu decken. Dieses wichtige Ziel kann und muss unter Berücksichtigung weiterer Nachhaltigkeitsziele, insbesondere dem Schutz der Biodiversität, erreicht werden. Der Österreichische Biodiversitätsrat nimmt die aktuellen Ausbaupläne des Kraftwerks Kaunertal zum Anlass und fordert, das öffentliche Interesse am Naturschutz bei Projekten miteinzubeziehen.

Die Gewässer Österreichs weisen bereits einen sehr hohen Grad an Ausbau mit Wasserkraftwerken auf. Die Errichtung und der Betrieb von Wasserkraftwerken – und das ist die Kehrseite der Medaille – führten aber auch zu irreversiblen ökologischen Schäden. Nur noch 17 % aller Fließgewässer in Österreich werden als sogenannte „freie Fließstrecken“ (ohne Regulierung, Verbauungen und Querbauwerke) geführt. Fließgewässer haben überlebenswichtige Ökosystemfunktionen. Sie erhalten Nährstoffkreisläufe und werden vom Menschen als essenzielle Landschaftselemente zur Erholung, als Einkommensquelle im Tourismus, als Quelle von Trinkwasser oder Nahrung genutzt. 

Proteste gegen das TIWAG-Projekt „Ausbau Kraftwerk Kaunertal“

Optimierungen an bestehenden Wasserkraftanlagen sind nachvollziehbar. Das Projekt „Ausbau Kraftwerk Kaunertal“ der Tiroler Wasserkraft AG (TIWAG) geht jedoch weit über eine Optimierung hinaus. Einwände und das in der wasserwirtschaftlichen Verordnung vorgegebene „Verschlech­terungs­verbot des jeweiligen Zustandes“ wurden in der Planung und Beurteilung des konkreten Projektes nicht berücksichtigt. Der Österreichische Biodiversitätsrat spricht sich hier strikt gegen die Vernichtung eines der zwei letzten unverbauten Gletscherbachsysteme aus. Im Platzertal würden durch den Bau des geplanten Staudamms großflächige Moore vernichtet werden, welche aufgrund ihrer regionalen und ökologischen Bedeutung nicht gleichwertig kompensiert werden können. 

Zielkonflikt „Öffentliches Interesse“

In der österreichischen Rechtsordnung werden die verantwortlichen Landesregierungen zu umfassendem Umweltschutz verpflichtet, Umweltschutz wird als öffentliches Interesse geführt. Der Österreichische Biodiversitätsrat unterstützt den naturverträglichen Ausbau erneuerbarer Energie im Sinne der Energiewende, betont jedoch gleichzeitig das öffentliche Interesse am Schutz der Artenvielfalt und Ökosysteme. Für alle Projekte der Energiegewinnung schlägt der Österreichische Biodiversitätsrat die Einbeziehung von Biodiversitätsexpert_innen in Planung und Entwicklung vor.

Meldung in der Langversion: www.donau-uni.ac.at/oebdr-energiewende

Über den Österreichischen Biodiversitätsrat

Der Österreichische Biodiversitätsrat ist die unabhängige Stimme für Biodiversität in Österreich und übernimmt dabei die Vertretung des Netzwerks Biodiversität Österreich (300 teilnehmende Personen und Organisationen). Der Rat besteht aus 27 Forscher_innen und Expert_innen der Bereiche Biodiversität, Ökologie, Landschaftsplanung, Naturschutz, ökologische Ökonomik, Agrarökonomie und Politikwissenschaften. 

Rückfragen & Kontakt:

Univ. Prof. Dr. Gabriel Singer, Österreichischer Biodiversitätsrat 
, 0664 126 6747 

Univ.-Ass. Mag. Simon Vitecek, Ph.D., Österreichischer Biodiversitätsrat 
 , 0650 270 66 78 

DI Nina Weber, M.Sc, Österreichische Biodiversitätsrätin 
, 0650 924 6162 

Mag (FH) Yvona Asbäck, MBA, Koordinationsstelle Netzwerk Biodiversität und Österreichischer Biodiversitätsrat, Universität für Weiterbildung Krems (Donau-Universität Krems) 
, 02732 893-2327

OTS-ORIGINALTEXT PRESSEAUSSENDUNG UNTER AUSSCHLIESSLICHER INHALTLICHER VERANTWORTUNG DES AUSSENDERS | DUK0001

Titelbild: Ckling41 via Widkimedia Commons, CC-BY



FacebooktwitterrssyoutubeinstagramFacebooktwitterrssyoutubeinstagram

Attac zu Strompreisbremse: Unsozial und klimaschädlich

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail
Lesedauer < 1 Minute.   

Während die AK die angekündigte Strompreisbremse begrüßt, kritisiert Attac den Vorschlag als unsozial, weil er Haushaltsgrößen nicht berücksichtige. Die kolportierten 2.900 kWh seien deutlich mehr, als kleine Haushalte verbrauchen. Haushalte mit fünf Personen und mehr haben hingegen doppelt so hohe Elektrizitäts-Ausgaben wie Ein-Personen-Haushalte. Unökologisch sei der Vorschlag, weil er keine progressiven Tarife für verschwenderischen Luxusverbrauch beinhalte und für kleine Haushalten keine Anreize, Energie zu sparen. Das Attac-Modell, der „Energie-Grundanspruch“, stelle den Grundbedarf an Energie für alle sicher und verringere verschwenderischen Luxusverbrauch. Mit dem Modell wird der Preis bis zu 50 Prozent des Normverbrauchs durch Zuschüsse gestützt. Darüber hinaus wird der Verbrauch mit progressiven Tarifstufen verrechnet. Mit den progressiven Tarifen im Attac-Modell werden die Ausgaben des Energie-Grundanspruchs zum Teil refinanziert. Zusätzlich fordert auch Attac ebenso wie die AK eine Besteuerung der exzessiven Gewinne der Energiekonzerne.
https://www.ots.at/presseaussendung/OTS_20220905_OTS0058/attac-zu-strompreisbremse-unsozial-und-klimaschaedlich



FacebooktwitterrssyoutubeinstagramFacebooktwitterrssyoutubeinstagram

Dekarbonisierung: Bildungscampus Seestadt Aspern ist energietechnisch weitgehend autark

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail
Lesedauer < 1 Minute.   
Foto: Alexander Migl via Wikimedia, CC BY-SA

Erste Erfahrungswerte nach einem Jahr Betrieb des Bildungscampus Seestadt bestätigen die Prognosen der Gebäudetechnik: Der Bildungscampus mit über 11.000 Quadratmeter Nutzfläche ist energietechnisch weitgehend autark. Erdwärme, Wärmepumpen und die Photovoltaikanlage auf den Dach decken den Energiebedarf vollständig. Auch an einem heißen Tag im August hat es im Gebäude eine Raumtemperatur von 22 Grad. Alle Decken sind bauteilaktiviert: In den Beton sind Rohre eingegossen, die je nach Bedarf Heiz- oder Kühlwasser führen. Weit vorgebaute Terassen sorgen für ausreichende Beschattung der großen Glasflächen. Die Stadt Wien setzt bei allen geplanten Bildungscampussen nur noch auf das Energiekonzept mit Bauteilaktivierung anstelle von Klimaanlagen.
https://www.ots.at/presseaussendung/OTS_20220811_OTS0043/dekarbonisierung-der-bildungscampus-der-zukunft-bild



FacebooktwitterrssyoutubeinstagramFacebooktwitterrssyoutubeinstagram

US „Inflation Reduction Act“ bringt Milliarden USD für grüne Industrie und Emissionsreduktion um ca. 42 % bis 2030
von Martin Auer

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail
Lesedauer 3 Minuten.   

Nach langem Tauziehen hat der „Inflation Reduction Act“ der Biden-Administration am 7. August 2022 den US-Senat passiert. Entgegengestellt hatte sich dem Plan vor allem der demokratische Senator Joe Manchin, Gründer des Unternehmens Enersystems, Inc., das im Bereich Kohlebergbau und Kohleverstromung tätig ist. Da die Demokraten auf seine Stimme unbedingt angewiesen waren, konnte er eine Reihe von Verwässerungen durchsetzen. Vor allem konnte er erreichen, dass neue Bohrrechte für Öl und Gas auf der Bundesregierung unterstehenden Gebieten im Golf von Mexiko und in Alaska vergeben werden1.

Dieses Gesetz soll einerseits neue Steuereinnahmen in Höhe von 739 Mrd. USD bringen, andererseits Ausgaben in Höhe von 370 Mrd. USD für die Bekämpfung des Klimawandels und die Verbesserung der öffentlichen Gesundheit bewilligen. Der Rest soll der Verringerung des Budgetdefizits dienen. Eine vorläufige Analyse durch das REPEAT-Projekt (Rapid Energy Policy Evaluation and Analysis Toolkit) der Princeton-Universität2 gibt eine positive Einschätzung der Klimawirkungen, auch wenn das Gesetz hinter den Erfordernissen des Netto-Null-Plans der Biden-Administration noch weit zurückbleibt.

Laut Hauptautor Jesse Jenkins von der Princeton University würde das Gesetz die Senkung der US-Emissionen bis 2030 um ca. 42 Prozent im Vergleich zu 2005 bringen und so bis zwei Drittel der Arbeit erledigen, die zur Erreichung des Netto-Null-Zieles bis 2050 notwendig ist. Indem es die Kosten für saubere Energie weiter senken würde, würde es Bundesstaaten und Städten leichter machen, eigene Klimamaßnahmen zu setzen und so zur Schließung der Emissionslücke beizutragen3.

Der Inflation Reduction Act würde laut der Studie im Vergleich zum gegenwärtigen Pfad die jährlichen Emissionen der USA bis 2030 um eine Milliarde Tonnen reduzieren. Dadurch würde er zwei Drittel der Emissionslücke zwischen der gegenwärtigen Politik und dem Ziel der Halbierung der Emissionen bis 2030 schließen. Die USA wären damit immer noch eine halbe Milliarde Tonnen CO2e von ihrem Klimaziel entfernt, der Halbierung der Emissionen bis 2030 (im Vergleich zu 2005).

Die Reduktion der Emissionen soll vor allem durch beschleunigten Ausbau sauberer Elektrizität und die Förderung der Elektromobilität geschehen. Dadurch sollen jeweils 360 Millionen und 280 Millionen Tonnen CO2e eingespart werden. Das Gesetz bietet auch steuerliche Anreize für Investitionen in Energieeffizienz und CO2-Sequestriereung in der Industrie, was weitere 130 Millionen Tonnen einsparen soll. Laut Jenkins soll dadurch in den Industrien mit den höchsten Emissionen wie Stahl- und Zementproduktion und Raffinerien das Einfangen und Speichern des bei den Prozessen entstehenden CO2 praktikabel werden.

Steuernachlässe, Steuergutschriften und Subventionen sollen die Elektrifizierung und Energieeffizienz von Gebäuden fördern. Die Reduktion von Methanemissionen im Öl- und Gassektor soll durch eine Methangebühr aber auch durch Subventionen erreicht werden. Schutzmaßnahmen in der Land- und Forstwirtschaft und Maßnahmen zur natürlichen Kohlenstoffspeicherung werden ebenfalls gefördert.

Durch das Gesetz sollen die Energiekosten in den USA bis 2030 um 4% sinken. Elektrische und Null-Emissions-Fahrzeuge sowie Wärmepumpen und Investitionen in Energieeffizienz sollen sowohl für Unternehmen wie für Haushalte billiger werden. Verringerter Verbrauch von Ölprodukten und Erdgas sollen die Rohölpreise um 5% und die Erdgaspreise um 10 bis 20% senken. Das Wachstum der Kapazität von Windanlagen könnte sich verdoppeln und das von Solaranlagen verfünffachen.

Die Studie veranschlagt, dass der Inflation Reduction Act im nächsten Jahrzehnt Investitionen im Wert von 3.500 Mrd USD in neue Energieinfrastruktur anstoßen wird, vor allem in Windkraft- und Solaranlagen, aber auch in die Produktion von Wasserstoff und in die Bereitstellung von Komponenten für saubere Energie wie Batterien oder die Gewinnung und Verarbeitung kritische Minerale.

Ein Paket von 60 Mrd. USD soll Klimagerechtigkeit fördern. Dazu gehören Programme zur Reduktion der Luftverschmutzung in einkommensschwachen Gebieten, Ersetzung von schmutzigen Schwerfahrzeugen wie Müllabfuhr oder Stadtbussen durch Null-Emissions-Fahrzeuge und die Verbesserung der Raumluft in Schulen in einkommensschwachen Gebieten. Ein Fonds von 27 Mrd USD soll benachteiligten Communities Zugang zu sauberer Energie bringen.

Der Report macht keine Erwähnung von möglichen Rebound-Effekten, also durch verbilligte saubere Energie verursachten höheren Verbrauch an Energie und Rohstoffen.

In der Einleitung wird betont, dass alle Ergebnisse vorläufige Schätzungen sind und durch weitere Studien aktualisiert werden können.

Gesichtet: Markus Palzer-Khomenko
Titelfoto: Bosox4duke via Wikipedia, CC BY-SA


1 https://www.bloomberg.com/news/articles/2022-07-28/manchin-deal-mandates-oil-and-gas-lease-sales-in-gulf-and-alaska

2 Jenkins, J.D., Mayfield, E.N., Farbes, J., Jones, R., Patankar, N., Xu, Q., Schivley, G., “Preliminary Report: The Climate and Energy Impacts of the Inflation Reduction Act of 2022 ,” REPEAT Project, Princeton, NJ, August 2022. Online: https://repeatproject.org/docs/REPEAT_IRA_Prelminary_Report_2022-08-04.pdf

3 https://governorswindenergycoalition.org/how-the-new-climate-bill-would-reduce-emissions/



FacebooktwitterrssyoutubeinstagramFacebooktwitterrssyoutubeinstagram

Dürre: Alarmstufe für 15 Prozent des EU-Gebiets

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail
Lesedauer < 1 Minute.   

Die Europäische Dürrebeobbachtungsstelle meldet für das letzte Julidrittel für 45 Prozent des EU-Gebiets Warnstufe, das heißt ein Defizit an Bodenfeuchtigkeit, und für 15 Prozent des EU-Gebiets Alarmstufe, das bedeutet Vegetationsstress auf Grund von Mangel an Bodenfeuchtigkeit und dadurch verursachtes Vegetationsdefizit. Ursache sind geringe Niedrschläge und frühe Hitzewellen im Mai und Juni. Da Flüsse zu wenig Wasser führen, sindsowohl Wasserkraftwerke als auch die Kühlsysteme andere Kraftwerke beeinträchtigt. Ebenso beeinträchtigt sind die bisherigen und die zu erwaartenden Ernteerträge.
Die Europäische Dürrebeobachtungsstelle (European Drought Observatory – EDO) ist ein Dienst der Gemeinsamen Forschungsstelle der Europäischen Kommission.
https://edo.jrc.ec.europa.eu/edov2/php/index.php?id=1000



FacebooktwitterrssyoutubeinstagramFacebooktwitterrssyoutubeinstagram

Passivhaus: Vom wissenschaftlichen Experiment zum simplen Standard
von Ines Clarissa Schuster

Passivhaus Beispiele
FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail
Lesedauer 4 Minuten.   

Die Anfänge des Passivhauses

Wolfgang Feist wollte es wirklich wissen. Den Physiker, der heute an der Universität Innsbruck lehrt, hat es persönlich interessiert: Wie weit kann man den Energieverbrauch von Gebäuden maximal minimieren? Mit wie wenig kann ein Gebäude im allerbesten Fall auskommen? Zunächst überlegte er in der Theorie und ermittelte mit Computer-Simulationen, was an Einsparungspotentialen vorhanden war. Das Ergebnis war verblüffend. Seine eigenen Erwartungen wurden übertroffen. Wenn gut gebaut wird, dann kann man den Energieverbrauch um 90% reduzieren. Wesentlich sind dafür: eine gut gedämmte und luftdichte Gebäudehülle, gut isolierende luftdichte Fenster, die Vermeidung von Wärmebrücken und eine Lüftungsanlage mit Wärmerückgewinnung. Wolfgang Feist nannte das Konzept „Passivhaus“.

Mit freundlicher Genehmigung von Rainer Pfluger

Aber war die Idee auch in der Realität umsetzbar? Die allererste Umsetzung des Passivhaus-Prinzips war ein finanzielles Wagnis. Für dieses Experiment nahm er sich ein kleines Reihenhaus vor. Eine Förderung des Landes Hessen unterstützte das Projekt.

Passivhaus für mehrgeschoßigen Hochbau

Es macht Sinn, eine neue Idee zuerst im Kleinen auszuprobieren, und nicht gleich ein mehrgeschoßiges Wohngebäude zu errichten. Allerdings erhöhte sich dadurch der Schwierigkeitsgrad. Ein Einfamilienhaus hat im Vergleich zu seinem Volumen „V“ (=Gebäudeinhalt) viel mehr Oberfläche „A“ nach außen. Dieses schlechte A/V Verhältnis bewirkt, dass über die große Oberfläche mehr Energie verloren geht. Um den gleichen Heizwärmebedarf zu erzielen, muss viel Stärker auf die Details geachtet werden: Die optimale Ausrichtung muss sehr gut durchdacht sein, es muss stärker gedämmt werden etc.

Das Wagnis des ersten Passivhauses war dann tatsächlich erfolgreicher als zuvor angenommen: Rainer Pfluger, Feists Kollege an der Uni Innsbruck: „Es wurde sehr gut gemacht, sogar extrem gut, sodass dieses Projekt als Nullheizenergiehaus klassifiziert wurde.“ Der Energiebedarf des Forschungsobjektes wurde detailliert über mehrere Jahrzehnte nachgemessen und hat die vorherigen Simulationsergebnisse bestätigt.

1996 gründete Wolfgang Feist das Passivhaus Institut in Darmstadt, das er bis heute leitet.

Trotzdem ist die Umsetzung des Passivhaus-Konzepts in größeren Objekten einfacher. Rainer Pfluger begann selbst 2002 in Kassel-Marbachshöhe mit dem ersten Passivhaus im großen Maßstab (2 Gebäudeblöcke mit insgesamt 40 Wohneinheiten). Es handelte sich um einen sozialen Wohnungsbau. Das bedeutet, es gab eine strenge Kostenobergrenze, welche nicht überschritten werden durfte. „Wir konnten zeigen, dass man mit einfachen Mitteln ökonomisch gut auskommt.“

Das erste mehrgeschossige Passivhaus Deutschlands
Copyright: ASP_Architekten

Wenn man so günstig ein Passivhaus errichten kann – wieso baut man noch anders?

Kürzlich wurde in einem Passivhaus-Wohnbau in Tirol ein besonders guter Mietpreis von nur 5 EUR/m² erzielt. „Es zeigt, besonders effizientes Bauen führt nicht zwingend zu Mehrkosten.“

Das Bauen ist generell teurer geworden. Aber wo liegen die Hauptkostentreiber? Diese liegen oft in neuen Anforderungen bezüglich Brandschutzes oder Barrierefreiheit. Natürlich gibt es auch Mehrkosten durch den Passivhausstandard: Bessere Dämmung, bessere Fenster usw. sind teurer. Die Analysen zeigen allerdings: Die Mehrkosten halten sich im Rahmen. In diversen Forschungsprojekten wurde genau untersucht, welche Mehrkosten allein durch die Energieverbrauchs-Optimierung des Gebäudes entstehen. Das Ergebnis lautet: 5-7%. „Dies ist so gering. Man wundert sich, warum es nicht verpflichtend ist, im Passivhausstandard zu bauen.“

Mit freundlicher Genehmigung von Rainer Pfluger

Wenn man die Kostenstruktur von Bau-Projekten genau ansieht, ist die Schwankungsbreite allein schon 5%. Wenn man sauber plant und am Anfang mehr Denkarbeit investiert, entstehen kaum Mehrkosten. Ein gutes, luftdicht geplantes Haus braucht kaum mehr Material als ein schlecht geplantes. Wichtig ist, dass die Anschlüsse dort geplant sind, wo sie hingehören und sauber aufeinander abgestimmt sind. Es ist wichtig, dass der Plan sauber, transparent und eindeutig ist. Dann passieren den Handwerkern weniger Fehler und die Gebäudeinfrastruktur hält Jahrzehnte.

Passivhaus-Standard fehlt im Erneuerbare-Wärme-Gesetz

Die Bundesregierung legte einen Entwurf zum Erneuerbare-Wärme-Gesetz (EWG) vor. Das Ziel des EWG ist, den Einsatz fossiler Brennstoffe für privaten Wärmebedarf bis spätestens 2040 komplett zu stoppen. Es werden viele Maßnahmen vorgeschlagen. Definitiv fehlt aber die Vorschrift, dass im Neubau im Passivhausstandard gebaut werden muss. Keine andere Maßnahme hat so einen großen Effekt.

Es scheint, dass das Geschäft mit dem Gas immer noch zu lukrativ ist. Es bleibt beinahe nur zu hoffen, dass die Energiekosten weiter so rasant steigen und es dadurch noch wirtschaftlicher wird, im Passivhausstandard zu errichten.

Das „Investor-Nutzer Dilemma“

Nun gibt es das „Investor-Nutzer Dilemma“: Wenn der Bauherr die Investitionen tätigt, um energieeffizienter zu bauen hat nicht er selbst, sondern der Mieter den finanziellen Vorteil, da dessen Energiekosten geringer werden. Aus diesem Grund ist der Bauherr eher motiviert, sich die Investitionen zu sparen. Eine Variante, um von den Mehrkosten selbst zu profitieren, ist die „Warmmiete“. Also die Energiekosten in den allgemeinen Miet- und Betriebskosten pauschal zu integrieren. In Deutschland wird bereits von einigen Wohnbaugesellschaften „warm“ vermietet. Im Passivhaus macht die Vermietung „warm“ besonders viel Sinn, da der Verbrauch sehr gering ist: Rainer Pfluger: „Wenn man bei 100 EUR Heizkosten pro Jahr liegt, ist die Abrechnung absurd. Man muss in jeder Wohnung eigene Zähler einzubauen. Diese müssen alle 5 Jahre erneuert werden und geeicht werden. Die Zähler-Daten müssen abgelesen oder übertragen werden. Die Abrechnung ist ein bürokratischer Aufwand. Rein ökonomisch und volkswirtschaftlich kann man die individuelle Abrechnung in Passivhäusern nicht rechtfertigen.“

Die Wohnungsbaugesellschaften haben es rechtlich nicht leicht, ihre Mehrinvestitionen geltend zu machen. Leichter fällt es, wenn sie sich die Kosten über die Warmmiete wieder hereinholen. Der Investor sorgt selbst für minimale Heizkosten und spart so direkt. Das „Investor-Nutzer Dilemma“ ist umgangen.

Kritik von Wiener Wohnen

Im Gespräch mit °CELSIUS berichtete ein Mitarbeiter von Wiener Wohnen von negativen Erfahrungen. In einem als Passivhaus ausgeführten Gemeindebau sei der tatsächliche Verbrauch der Mieter um ein Vielfaches höher als ursprünglich berechnet. Viele Mieter in diesem konkreten Gebäude sind Raucher. Sie haben die Fenster oft geöffnet und verursachen damit große Energieverluste.

Rainer Pfluger würde hier die Verantwortung nicht generell den Bewohnern in die Schuhe schieben,. Höherer Verbrauch kann ja auch an der Planung oder Ausführung begründet liegen. Auf jeden Fall sind solche Beschwerden: „Jammern auf hohem Niveau: Selbst, wenn der gemessene Verbrauch doppelt so hoch ist wie der ursprünglich angenommene, ist dieser immer noch ein Bruchteil.“ Prinzipiell gibt es in Wohnhäusern immer eine gewisse Verbrauchs-Streuung. Manche Bewohner brauchen etwas mehr, andere brauchen etwas weniger. Der Planungswert von 15 kWh pro Jahr und Quadratmeter ist ein Mittelwert über mehrere Wohneinheiten.

Das Problem liegt oft daran, dass die Dimensionierung der Heizung so ausgelegt wird, dass die Innenräume auch dann warmgehalten werden können, wenn die Fenster immer offenstehen. Das muss nicht so sein. Eine knappere Dimensionierung führt automatisch dazu, dass das Fenster wieder zugemacht wird, wenn es kühler wird.

Titelfotos: Herbert Krabal und ASP_Architects
Gesichtet: Martin Auer



FacebooktwitterrssyoutubeinstagramFacebooktwitterrssyoutubeinstagram

Öl- und Gasindustrie: Seit 50 Jahren täglich 2,8 Mrd. USD Reingewinn

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail
Lesedauer < 1 Minute.   

Die Öl- und Gasindustrie hat in den letzten 50 Jahren täglich 2,8 Milliarden Dollar Reingewinn gemacht. Das geht aus einer Analyse von Weltbank-Daten durch Prof. Aviel Verbruggen, Universität Antwerpen hervor. Laut Verbruggen, Mitautor des IPCC-Berichts über erneuerbare Energiequellen von 2011, haben die Ölkonzerne und Ölstaaten damit ein Prozent des globalen Vermögens an sich gebracht. Mark Campanale von der unabhängigen Denkfabrik Carbon Tracker, die die Studie bestätigte, wie darauf hin, dass die Öl-, Gas- und Kohlereserven, die im Boden bleiben müssen, um das 1,5°C-Ziel noch zu erreichen, für die internationalen Ölkonzerne einen entgangenen Gewinn von 100 Billionen USD und einen entsprechenden Machtverlust bedeuten würden.
https://www.theguardian.com/environment/2022/jul/21/revealed-oil-sectors-staggering-profits-last-50-years



FacebooktwitterrssyoutubeinstagramFacebooktwitterrssyoutubeinstagram